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Abstract 5 

Worsening highway congestion is a challenge to mega-regional competitiveness; and 6 

changing regional geographies and development location decisions, among other factors, demand 7 

that public policy responses go beyond traditional demand management approaches. Congestion 8 

pricing has been suggested as a remedy. In this article, we analyze the outcomes of multiple 9 

congestion pricing approaches for the Capital Mega-region that spans the following five 10 

Metropolitan Planning Organization regions: Washington (DC-MD-VA), Baltimore (MD), 11 

Wilmington (DE), Fredericksburg (VA), and Frederick (MD) and counties in adjoining states of 12 

NJ, PA and WV. Using a mega-regional travel demand model, we incorporate different values-13 

of-time for travelers under different conditions. However, our value-of-time estimates are not 14 

limited to income categories. Our estimates also include trip purposes across a number of 15 

scenarios. We demonstrate that adding trip-purpose to congestion price determination leads to 16 

different outcomes at the mega-regional level and also for individual sub-regions. The results of 17 



2 

this paper show how highway users respond in substantially different, and in some cases, 1 

unexpected ways to congestion charging when trips by income and purpose are assigned unique 2 

values-of-time. The findings provide engineers, planners and policy makers with a new 3 

analytical approach to measuring traveler elasticity to tolls while demonstrating the complexity 4 

involved with road pricing mechanisms. We conclude with implications for adopting this 5 

approach and ideas for implementing them in a complex institutional set-up. 6 

 7 

CE Database subject headings: value of time, elasticity, commuter travel, congestion pricing, 8 

megaregion  9 

 10 

 11 

 12 

13 

14 
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Introduction 1 

The right scale for transportation planning has been a subject of considerable analysis. 2 

For example, a number of studies have shown the limitations of traditional Metropolitan 3 

Planning Organization (MPO)-level decisions in addressing larger regional issues (Amekudzi, 4 

Thomas-Mobley, and Ross 2007, Barbour, Teitz, and California 2006, Bollens 1997, Wheeler 5 

2002, Wheeler 2009). They range from difficulties in accounting for extra-territorial spillovers 6 

(Knaap, Bento, and Lowe 2008 and (Downs 1994)), setting boundaries amidst shifting economic 7 

geographies (Dewar and Epstein 2007) and the institutional complexities of formulating and 8 

implementing coherent supra-regional policies (Friedmann and Weaver 1979, Katz 2000, M. 9 

Teitz and Barbour 2007, and Womersley 2006). With the emergence of mega-regional clusters as 10 

engines of economic growth and competitiveness, planners, policymakers and researchers need 11 

to consider how transportation systems can aid regional development, mitigate the challenges 12 

resulting from shifting regional travel demands, and facilitate robust decision-making that can 13 

withstand future uncertainties.  14 

One such challenge is transportation related congestion. With the decentralization of 15 

employment in the last two decades and increased suburb-to-suburb trips, congestion has become 16 

a spatially broader issue (Ewing and Cervero 2001and Orfield 1997). In many metropolitan 17 

areas, severe highway congestion problems are expected to exacerbate if the current trends 18 

continue (Cervero 2003, Downs 2004 and TRB 2009) This has implications for mega-regional 19 

competitiveness and thus congestion mitigation approaches and their mega-regional outcomes 20 

deserve closer attention (Keil and Young 2008).  21 

So far, tolls and occupancy controls have been the most commonly used instruments for 22 

regulating highway use. However, with better modeling techniques and improvements in 23 
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Intelligent Transportation Systems, more real-time, demand-driven congestion pricing 1 

approaches are being considered (Giuliano 1992). While congestion pricing shares many 2 

common characteristics with traditional toll assessment, its potentially dynamic nature and focus 3 

on congestion mitigation over infrastructure financing, offer new opportunities and challenges. 4 

Apart from political and institutional complexities, a host of factors go into congestion 5 

price analysis including, travel demand, infrastructure supply, and commuting patterns, A central 6 

tenant of this process is commuter behavior, i.e. the elasticity of travel demand with respect to 7 

congestion and price. Travelers may elect to pay a cost based on whether there is a 8 

corresponding time savings, convenience or available alternative modes or routes. A key 9 

parameter in this analysis is the estimated value of time (VOT). The VOT literature has 10 

traditionally focused on income distribution among all trips (Hensher 2001 and Lisco 1968). 11 

However, extending the notion of VOT using travel demand models to include trip purpose has 12 

the potential to enrich VOT based analysis. It can also add a more explicit spatial component to 13 

the analysis thus allowing us to test pricing approaches at large scales. This is what we do in this 14 

paper. Specifically, we ask 1) whether congestion pricing determination can be improved using 15 

an enhanced Value-of-Time determination approach that accounts for both income and trip-16 

purpose of the commuters, 2) how mega-regional pricing approaches using congestion pricing 17 

differs in outcome from traditional MPO based approaches and 3) how different conditions in 18 

future can affect the congestion outcomes differently under traditional MPO-based or mega-19 

regional approaches. 20 

We use the Capital Megaregion to demonstrate the value of our approach. We define this 21 

mega-region to span the following five Metropolitan Planning Organization (MPO) regions: 22 

Washington (DC-MD-VA), Baltimore (MD), Wilmington (DE), Fredericksburg (VA), and 23 
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Frederick (MD). In addition, the mega-region includes a number of counties adjoining the above 1 

regions including those in southern New Jersey and Pennsylvania and northeastern West 2 

Virginia.  The unifying characteristics for this mega-region besides commute-shed linkages are 3 

the presence of a large number of federal and other government-related jobs and environmental 4 

systems connectivity, especially at the watershed level. 5 

We proceed as follows. In the next section, we discuss the practices and research on how 6 

value-of-time is incorporated in travel behavior models and what that tells us about congestion 7 

pricing and issues of scale. In the following section, we establish our framework to develop and 8 

analyze mega-regional scenarios. This process involves the use of multi-level transportation 9 

models that are sensitive to congestion pricing and variations in future travel demand. Next, we 10 

generate estimates of VOT using different approaches viz. income only, income and trip purpose, 11 

and income and trip purpose and variable travel demand; using an example problem on a small 12 

network, we demonstrate the value of using trip-purpose in VOT estimation. In the following 13 

section, we present the results of applying this approach on our case study: the Capital Mega-14 

region. We conclude with specific implications for mega-regional decision-making. 15 

 16 

Literature Review 17 

In this section, we look at the literature on approaches used for analyzing commuter and 18 

non-commuter travel behavior using differential VOT, further cross-classified by income and trip 19 

purpose. We then look at their limitations to establish a foundation for our work. Finally we draw 20 

evidence from existing research on how these approaches can aid mega-regional decision-21 

making.  22 
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From the early 1990s, a series of projects in the United States has demonstrated the 1 

applicability of congestion pricing. Many transportation projects have combined pricing with 2 

priority for high-occupancy vehicles in the form of ―High Occupancy Vehicle (HOV) and High 3 

Occupancy Toll (HOT)‖ lanes. In this scheme, a set of express lanes on an otherwise free and 4 

congested road offers high-quality service to people who are willing to pay a time-varying toll 5 

and/or who ride in carpools. These projects provide an opportunity to study some behavioral 6 

parameters that are central to the evaluation of transportation projects. The most important is the 7 

VOT, i.e. the marginal rate of substitution of travel time for money, which measures willingness 8 

to pay for reductions in the day-to-day variability of travel times facing a particular type of trip 9 

(Kenneth A. Small and Yan 2001). A commuter traveling between any origin and destination 10 

points can pay higher tolls to save on travel time, or use alternative routes and/or modes to avoid 11 

tolls but travel for a longer time. In theory, the right toll can reduce peak hour congestion; thus, 12 

travelers who highly value time and who want to travel at peak periods can shift to toll roads. 13 

The relationship between toll, and travel time can raise a fundamental question regarding the 14 

travelers‘ willingness to pay so as to save travel time, i.e., commuters‘ value of travel time. 15 

The concept of VOT and travel behavior has been researched extensively. In the early 16 

applications of 1960, the notion of value of time was used to develop the theory of time 17 

allocation and in practice to estimate, say, the time savings in cost-benefit analysis of highway 18 

investment decisions (Warner 1962, Lisco 1968 and Haney 1967). With advances in theory, 19 

particularly random utility theory, and methodologies, especially discreet choice models, and 20 

improvement in computing, the VOT literature has shifted to focus on individual behavior.  21 

Small (1982) generalized from a review of many estimates that the average VOT for journeys to 22 

work is about 50% of the gross wage rate. In most studies since then, VOT of commuters have 23 
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been developed using discrete choice models (e.g., binary logit, mixed logit, multinomial logit, 1 

and nested logit) and based on traveler survey data (Rosen and Small 1981, Leurent and Wagner 2 

2009, Sullivan 2002, Hultkrantz, Mortazavi, and Hulkranz 2001, Brownstone et al. 2003, Cirillo 3 

and Axhausen 2006, Brownstone and Small 2005).  4 

While the above approaches provide a useful framework for estimating congestion 5 

pricing, they have several limitations. Generalized measures of VOT are inherently regressive in 6 

nature and may lead to inequitable distribution of costs and benefits among users (Mackie, Jara-7 

Di‘az, and Fowkes 2001). Extending the characterization of VOT to include income groups 8 

(Hensher 2001; Gunn 2001) addresses this to an extent, although congestion pricing remains 9 

regressive, adding fuel to the political opposition to many such measures. Another limitation of 10 

this approach is the lack of emphasis on travel behavior in VOT estimation. To address this 11 

Mackie, Jara-Di‘az, and Fowkes (2001) suggested extending the concept from using one VOT 12 

for all non-work activities to using specific value for each activity. Activity-based estimates 13 

promise to advance the value of VOT and associate it with longer distance commutes and 14 

interregional travel.  15 

Travel demand models can be useful in this regard. Unlike travel surveys and 16 

econometric models that provide commuters‘ willingness to pay, travel demand models can 17 

provide useful information on travel behavior and, by extension, connect it with VOT. The 18 

sensitiveness of VOT in such models can vary across two dimensions; income category and trip 19 

purpose. For example, a commuter during the peak period may be willing to pay more than a 20 

non-commuter. If so, when a non-toll road is converted to a toll road, the marginal rate of 21 

substitution for the commuters can be expected to be lower than that of the non-commuter. These 22 

impacts are similar in effect with income-based categorization where the marginal rate of 23 
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substitution for a high-income traveler will likely be lower than that of lower income traveler. In 1 

practice however, it is a combination of these effects but their implications are not very clearly 2 

studied in the literature. This, as we demonstrate later, presents a gap in mega-regional 3 

congestion pricing that this research attempts to address.  4 

In summary, the notion of value of time has become central to transportation economics, 5 

modeling and policy. It allows us to incorporate the time dimension of travel into capital 6 

decisions and use pricing mechanisms to influence behavior. In this section, we synthesized the 7 

established literature on how value-of-time is estimated and how it affects congestion price 8 

determination. We find that income-only approaches provide limited estimate of the value-of-9 

time and factoring trip-purpose in such estimation can be a more robust approach. Due to the role 10 

of value-of-time in congestion price determination and the promise of congestion pricing in 11 

mega-regional transportation planning, analyzing these issues at such scales can illuminate 12 

possible efficiencies.  13 

 14 

Methodology 15 

Effective modeling efforts have in the past focused on incorporating road pricing into the 16 

highway assignment algorithm via Waldrop‘s User Equilibrium (UE) objective function and a 17 

Frank-Wolf (FW) solution approach. In the mega-regional context travel behavior, especially 18 

route choice can be studied with the user equilibrium method. A set of models are proposed in 19 

Table 1 and described in the following paragraphs. 20 

A base-case, which represents the current mega-regional conditions, without any pricing, 21 

is analyzed using user-equilibrium. In Table 1, the objective function of the Base-case shows 22 
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assignment of flows occur as per Wardrop's first principle, which denotes that ―no user can 1 

experience a lower travel time by unilaterally changing routes‖ (Sheffi 1985). In simple terms, 2 

the equilibrium is achieved when the travel cost on all used paths is equal. The three terms in 3 

equation (1) represent the total travel cost. The first term,   , is the travel time for link a, which 4 

is a function of link flow   . The sum of these two terms in equation (1) can be referred as user 5 

cost for link a (          . Equation (2) is a flow conservation constraint to ensure that flow 6 

on all paths r, connecting each Origin-Destination (O-D) pair (i-j) is equal to the corresponding 7 

demand. In other words, all O-D trips must be assigned to the network. Equation (3) represents 8 

the definitional relationship of link flow from path flows.  9 

<<Table 1 about here>> 10 

Equation (4) is a non-negativity constraint for flow and demand. The travel time function 11 

ta(.) is specific to a given link ‗a’  and the most widely used model is the Bureau of Public Roads 12 

(BPR) function given by 13 

          (     (
  

  
))

  

 (5) 

 14 

where to(.) is free flow time on link ‗a’, and    and    are constants (and vary by facility 15 

type).    is the capacity for link a. In the Base-case the objective is the minimization of user 16 

travel time. In this Base-case, the multiclass UE assignment considers VOT for each by income 17 

but not trip purpose.  18 

Model-1 is distinguished from the Base-case with the implementation of congestion 19 

pricing on specific links. Like the Base-case a unique VOT is specified for each income class, 20 
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but does not vary by trip purpose. Specification of a VOT for each income class means the 1 

perceived toll values vary for users by income class. In general practice, toll values are modeled 2 

to reflect varying values-of-time. This can be achieved in each model by adding a term for the 3 

toll value scaled by the corresponding VOT by income to the objective function shown in 4 

Equation (1). The revised equation reflects this change, and is shown in Equation (6).   5 

While the objective function in Model-1 (equation-6) is changed compared to the Base-6 

case (equation-1), the equilibrium constraints remain the same. The Base-case model is not 7 

suited for congestion pricing analysis, but the Model-1 is capable of doing so where VOT varies 8 

by income category.  9 

Often, a traveler‘s VOT varies depending on the type of trip that is being considered. For 10 

example, when a trip is being made for the purpose of commuting to work, the value of time is 11 

higher than a trip that is made for shopping or recreational purposes. The objective function for 12 

Model-2 shown in Equation (7) incorporates this principle. The second term, (
      

 
 
 ) represents 13 

the cost of travel for toll value of    and is weighted with VOT by income group i, and purpose p 14 

(   
 
).  15 

Model-3 builds on the income and purpose classified VOT in Model-2 but adds inverse 16 

demand based highway assignment. Link (Model-1) and purpose differentiated pricing (Model-17 

2) provide a good understanding of shifting routes and modes (discussed later in the paper). 18 

However, both Model-1 and Model-2 do not consider the variability of demand because of 19 

changes in network conditions as a result of changes in link pricing. Alternatively, highway users 20 

are not elastic to the pricing strategy. Demand elasticity can be incorporated into the models by 21 
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introducing an inverse demand function in the objective function. Modeling variable demand 1 

completely changes the objective function. 2 

This formulation of variable demand allows the decision maker to model the elasticity of 3 

the user behavior. The constraints for the variable demand model remain the same as in the Base-4 

case (see equations 2-4). The inverse demand function    
      is associated with O-D pair i-j. An 5 

exponential demand function is then used which is a function of potential demand and least user 6 

cost paths to determine the new demand    
 
(   ) between O-D pairs is given by 7 

   
 
(   )   ̂  

 
   (      

 )          (9) 

 

where  ̂  
 

 is the potential demand between i-j,     
  is the least cost path between O-D 8 

pairs i-j and   is a positive constant. This new demand is then fed back into the highway 9 

assignment model. The users in the i-j O-D pair are now elastic to the cost of travel (   
 ). 10 

Alternatively, as the cost increases the willingness to travel decreases.  11 

Measures of User Response to Pricing 12 

We construct a two dimensional framework to analyze traveler response to congestion 13 

pricing. The first dimension is an economic approach that measures travel demand response to 14 

changes in road price. The second dimension of analysis measures changes in network conditions 15 

as a result of pricing, utilizing measures commonly reported in a traffic demand modeling 16 

context.   17 

Price Elasticity of Demand  18 

To analyze the likely travel behavior response to pricing mechanisms in the mega-19 

regional context, we use an analytical framework common in economics to measure change in 20 
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both an example problem and case study. Our framework is based on price elasticity of demand, 1 

where the change in quantity of a good demanded (in this case, travel on a given highway link) is 2 

measured relative to the change in the price of that good. Measuring behavioral change in this 3 

way allows planners and policy makers to determine how several important components of 4 

traveler response to road pricing are affected, including likely traffic volume, impact on each 5 

income group, response by users with different trip purposes and possible revenue from pricing.     6 

Determination of price elasticity of demand in a mega-region in our paper is aided by the 7 

application of the previously discussed models to an existing validated multistate transportation 8 

demand model. Using an existing validated model allows us to change the price of travel in 9 

multiple metropolitan areas (each with their own unique characteristics) to determine how 10 

drivers will likely react to the pricing, based on income and trip purpose. These changes model 11 

probabilistic demand elasticity to road pricing.  12 

We use the arc elasticity formula to model user response. Arc elasticity, using the 13 

midpoint formula is simply: 14 

   
     

(
     

 
)
 

     

(
     

 
)

 

 

(12) 

where    is the initial toll price on the set of city links,    is the new price with the VMT 15 

based toll,    is the original volume on all tolled links in the designated area and    is the volume 16 

after the VMT toll is initiated. The resulting elasticities provide a measure of traveler sensitivity 17 

to road pricing within multiple metropolitan areas and for two key user characteristics: income 18 

and trip purpose.  19 
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There are five types of elasticity. Where    is equal to 0, the user response in demand to 1 

price change is known as perfectly inelastic; where users do not change the quantity demanded 2 

when the price changes. Second is perfect elastic demand, when    is equal to (negative) 3 

infinity, users are perfectly elastic. This means that a tiny change in price will drive a large 4 

change in demand. Third is when    is equal to one, this is called unit elasticity, where change in 5 

demand is exactly proportional to the change in price. The final two elasticities are termed elastic 6 

demand when    is greater than one and inelastic demand when    is less than one. Elastic 7 

demand means that there is a proportionally greater change in quantity demand than the change 8 

in price while inelastic demand means there was a proportionally greater change in price than 9 

quantity demanded.    10 

Other Network Statistics 11 

Another common and useful measure of user response to road pricing is the amount of 12 

travel in a given area, measured by link travel volume and link distance, known as vehicle miles 13 

travelled (VMT). Another measure is the time a road user spends driving, which is the time in 14 

hours it takes all road users to reach their destination, or vehicle hour travelled (VHT). Finally, 15 

the miles of road where the amount of traffic volume on a given link as a ratio of the link‘s 16 

capacity exceeds .75 is an indicator of network conditions called congested lane mile (CLM). 17 

Each of these measures is reported for the case study.  18 

 19 

Solution Approach 20 

The recently conducted Household Travel Survey (HTS) in the Washington-Baltimore 21 

region was used to determine VOT. Five income groups are considered from the survey and 22 

presented in Table 2. The value of time in cents per minute and dollars per hour used for each 23 
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category is presented in the fourth and fifth column. The dollars per hour income is converted to 1 

dollars per year by assuming 2080 working hours per year. 2 

<<Table 2 about here>> 3 

Link costs are further categorized by purpose, type of travel and user class. There are 18 4 

trip purposes when classified by income. The trip purposes are classified as Home Based Work 5 

(HBW), Home Based Shopping (HBS), and Home Based Other (HBO), each classified in five 6 

income categories (i.e. 3*5 = 15 purposes); and journey at work (JAW), journey to work (JTW), 7 

and non-home based (3 purposes). Further the five long distance trips: commercial, medium 8 

truck, heavy truck, regional auto and regional truck are included in the trips.  9 

The trip purposes are classified as commuter, non-commuter, and regional based on their 10 

travel objective. HBW and JAW are considered as a commuter trip, while as HBS, HBO, JTW, 11 

and NHB are considered as non-commuter trip. Modes are single occupancy vehicle (SOV), high 12 

occupancy vehicle (HOV) with 2 occupants, and HOV with 3 or more occupants. The VOT for 13 

different trip purpose, income category and vehicle class is presented in Table 3. For instance, 14 

―cost a1‖ is the value of travel time for income group 1 for HBW trip purpose, and ―cost a2‖ is 15 

the VOT for income category 2 for HBO and HBS trip purpose. Further, HBW is classified as 16 

commuters, whereas HBS and HBO are classified as ―non-commuters‖. JTW is considered as a 17 

commuter trip purpose (―cost c1‖), and the average income is considered for JTW. JAW and 18 

NHB trip purposes are considered as non-commuter trip purpose with average income (―cost 19 

c2‖).  A total of 20 user classes are defined, which are further categorized as three trip purposes 20 

such as commuter, non-commuter and regional. The regional trips are external trips long distance 21 
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commercial vehicle, auto and truck trips. All the regional trips are considered as higher income 1 

category with non-commuter trip purpose (―cost e2‖).  2 

<<Table 3 about here>> 3 

 4 

Example Problem 5 

An example problem is described in this section to demonstrate the effect of VOT by trip 6 

purpose on a small network. Figure 1 illustrates the network which consists of a single origin 7 

(node-1) and a single destination (node-2) on a standard Braess network. The network has a total 8 

of four nodes and five one-way links. Table 4 provides a listing of the network characteristics. 9 

The network is assigned a total 6,000 trips. Table 5 shows the VOT associated with each trip 10 

purpose and the number of trips assigned to the example network for the three trip purposes in 11 

the Base-case and three models.  12 

<<Fig. 1 about here>> 13 

A Base-case and three models were developed for the example problem. Each of the four 14 

scenarios is described below. The results of the four scenarios are summarized in Table 6.  15 

<<Table 4 about here>> 16 

In the Base-case there are no priced links and VOT for every trip purpose is 23.333, 17 

which is equal to $14/hour. The links with the lowest cost receive the highest volume, in this 18 

case links 1 and 5; the other links (2-4) share the remaining volume. Link 4 has the lowest 19 

volume because of its low speed, longer length and the attractiveness of the center link (3).  20 

<<Table 5 about here>> 21 
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Model-1 is the same as the Base-case but link 4 is tolled 600 cents. This additional cost 1 

represents a one dollar per mile toll or 25.71 minutes of additional travel time with the base 2 

VOT. This relatively high toll is used to demonstrate the model response to changes in link cost. 3 

In this case, the high cost of travel on link-4 makes travel on that link prohibitively expensive. 4 

The toll increases travel cost from 20.01 to 37.71. The increase in cost is less than the toll plus 5 

the link cost in the Base-case as a result of the traffic reduction on the link; travel time does not 6 

increase above free flow. This makes the cost of travel along paths 1-3-5 and 1-5 relatively 7 

cheaper so that more trips occur on this path.  8 

Model-2 uses the same toll structure as Model-1 but implements a trip purpose-based 9 

VOT for all trips. The VOT for HBW trips is the highest at 46.666 which represents a value of 10 

$48/hour (2,800 cents / 60 minutes). HBO and NHB trips have the same VOT at 23.333, equal to 11 

$14/hour. The results of the assignment show that with a higher VOT, the cost of travel on the 12 

tolled link is relatively cheaper than travel on the congested non-tolled links. HBW travelers face 13 

a cost on path 1-4 with the tolled link of 40 (12.46+27.54) as opposed to other trips with a lower 14 

VOT of 52.86 (12.46+40.40), which makes travel along this path prohibitively expensive. Some 15 

HBW trips do occur on the non-tolled path 2-5 but to a much lower extent as too much traffic on 16 

this route would cause an increase in travel cost.  17 

Model-3 implements a variable demand technique. This differs from the other three cases 18 

as travelers first face the time (and toll) costs for their trip to decide if the trip should be taken 19 

and by which mode. Only after the traveler has decided to take a vehicular trip does time and toll 20 

cost influence route choice. The need and desire for travel is influenced by the costs a road user 21 

faces. These costs are much different depending on the type of trip the user is making. When the 22 

user‘s VOT is high, there is less elasticity between trip cost and the decision to make a trip. 23 
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When the VOT is low, a user is more likely to decide to stay home or take an alternative mode. 1 

In the example problem, table 2 shows the change in trip rates as a result of variable demand. 2 

HBW vehicular trips which have the highest VOT are reduced by 15.75% when the full cost of 3 

the trip is known. For HBO and NHB trips vehicular travel is reduced more than 20% since the 4 

trip purpose has a lower VOT.  5 

The reduction in trips overall has an impact on the route decisions of users. When few 6 

network trips occur the cost of travel in terms of time is reduced for HBW trips and the relative 7 

cost of the tolled link increases. As a result, the relative share of HBW trips that are assigned to 8 

the non-tolled path 2-5 increase from 23% in Model-2 to 37% in Model-3. The increased number 9 

of trips on non-tolled path 2-5 by high VOT travelers results in more trips on the longer 1-3-5 10 

path for less time sensitive travelers in the HBO and NHB trip categories.  11 

<<Table 6 about here>> 12 

Price Elasticity of Demand 13 

Table 7 shows the elasticity of demand for travel on priced links derived from the 14 

example problem model results. The elasticity of demand to the toll on link 4 is high for all trip 15 

purposes in Model-1. All trip purposes react with an elasticity of 3.26. In Model-2 when HBW 16 

trips have a much higher VOT, the elasticity reverses signs. The results mimic a Giffen Good, 17 

where price and demand simultaneously increase. This result illustrates the complexity of 18 

network assignment; though the price increases for travel on link 5 for HBW trips, the relative 19 

cost of travel decreases as more trips for other purposes divert to alternative routes. In Model-3 20 

there are two demand elasticities at work. The first is the elasticity of trip making decisions when 21 

a variable demand model is implemented. The second elasticity is in route taking decisions. As a 22 
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result, when highway assignment occurs, many fewer trips are taken, the cost of travel is less, 1 

and thus elasticity is lower. For HBW trips in Model-3, travelers are inelastic to demand 2 

(elasticity of .13), and all other travelers are half as elastic as in the other models.  3 

<<Table 7 about here>> 4 

Summary of Example Problem  5 

The example problem demonstrates how user response to priced road links can be 6 

modeled to incorporate multiple classes of VOT. The results show how highway users traveling 7 

for commuting purposes with a high VOT are less sensitive to increases in travel cost in terms of 8 

tolling and other road users with a lower VOT will avoid travel on tolled links as much as 9 

possible. The example problem also shows how even in a relatively simple network, highway 10 

users have complex responses to pricing, in some cases demanding more travel when certain 11 

costs increase and demanding less when other costs increase.  12 

 13 

Case Study 14 

The case study applies the model methodologies developed earlier in our paper to analyze 15 

commuter behavior for multiple sub-regions in the Capital mega-region. Figure 3 shows the 16 

geography of the study area, which is subdivided into 1,607 Mega-region Modeling (Traffic) 17 

zones (MMZ). The complete model also includes a zone super structure of 131 National 18 

Modeling Zones (NMZ) which covers the rest of the United States. The regional zones are 19 

included in the model to incorporate long distance and regional travel originating or destine for 20 

zones outside of the mega-regional study area. The model is constructed with a generalized 21 

highway network with several levels of facility types including all interstates, major highways 22 
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and many arterials. The network consists of over 167,000 links with 20 facility types including 1 

both highway and transit.  2 

<<Fig. 2 about here>> 3 

To demonstrate how highway users behave in response to priced links in locations with 4 

unique characteristics, we further divided the Capital mega-region into six metropolitan areas. 5 

These six metropolitan areas vary in terms of population, density, geographic scope, average 6 

income and highway network complexity. The network and zone system of the six metropolitan 7 

areas selected for analysis is shown in Figure 3. The locations are arranged (from ―a‖ to ―f‖) in 8 

order of descending size, density, and complexity. The first two (―a‖ and ―b‖) metropolitan areas 9 

are the largest mega-region, Washington DC and Baltimore (city). The next largest area is 10 

Alexandria which is situated just south of Washington DC. Wilmington (―d‖) is located in the 11 

northeast corner of Delaware. Frederick (―e‖) is the second largest city in Maryland, after 12 

Baltimore. Finally, Fredericksburg is rural but rapidly growing independent city about 50 miles 13 

south of Washington in Virginia.  14 

<<Fig. 3 about here>>  15 

The case study follows that same methodology developed in earlier parts of this paper 16 

and in the example problem. A Base-case is specified which represents current highway network 17 

travel activity and three models with tolling and differing levels of VOT are developed. A toll of 18 

$0.50 per mile is applied to interstate facilities that intersect the border of each of the six mega-19 

regional metropolitan areas. In the cases of Washington DC and Baltimore the toll is also applied 20 

to interstate beltways that surround the city border but to not enter into the city. The toll is 21 
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equivalent to a congestion charge as the pricing mechanism is implemented only during the peak 1 

AM and peak PM periods.  2 

 3 

Results and Discussion 4 

We constructed a Base-case and three models to illustrate user response to road charges 5 

with a typical multiclass assignment model specification where users‘ value-of-time is based 6 

only on their income categories and then with trip purpose differentiated VOT. For the purpose 7 

of this case study, there are two types of trips differentiated. The first trip purpose is for 8 

commuting and the other is for non-commute trips. The distinction in VOT between these trips is 9 

that VOT for commuting trips in each income category is twice (similar to the example problem) 10 

the VOT for non-commuting trips.  11 

Assignment Results and Elasticity 12 

The Base-case scenario is used as a reference point to measure how users respond to road 13 

charges in each of the three models. The results for the Base-case and three models are presented 14 

from the PM peak period. For brevity, AM, Mid-day, and Night time period results are not 15 

presented. However, it should be noted that the model produces outputs for all time periods. 16 

Table 8 shows the number of commute trips without a VMT based toll and with VOT by income 17 

class only. In the six selected cities there are a total of about 3.2 million vehicle trips on specific 18 

interstates that will be subjected to congestion charging in the models. On these facilities in the 19 

Base-case nearly 50% of all travel is composed of commute trips. The composition of income in 20 

each of these trip purposes is significantly different; for commuter trip purposes the majority of 21 

trips are in the lower income groups while the majority of trips in the non-commute purpose are 22 

in the higher income categories. For example, among all regions analyzed, Income group-3 has 23 
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the highest number of commuters (916,647) where income group-4 and group-5 carry the lowest 1 

number of commuter trips. In contrast, for non-commuter trips, income group-4 has the highest 2 

number of trips (1,133,449) and income group-1 has the lowest number of non-commuter trips.  3 

<<Table 8 about here>> 4 

Model-1 institutes the $0.50 per mile congestion charge on major interstate corridors 5 

within or near each if the six metropolitan areas. Table 9 presents the elasticity of demand from 6 

the pricing. The results indicate how pricing affects route taking decisions especially where VOT 7 

is low (income groups 1-3). The results show that users in the lowest income categories are the 8 

only group that is elastic to changes in pricing. In other words, higher income group travelers 9 

continue to use the same path even when the link is priced. Other income groups have a VOT 10 

high enough that the pricing of a road segment along a selected path does not significantly affect 11 

the path selection process.  12 

The results of our model have some implications on a mega-regional scale. Areas of 13 

higher density tend have a higher elasticity of demand in terms of toll, with some exceptions. In 14 

Model-1 where all road users are not differentiated by trip purpose, the elasticity of all six areas 15 

combined ranges from .99 for the lowest income group to .28 for the highest income group for 16 

commute trips. For non-commute trips, elasticity for the lowest to highest income group ranges 17 

from .99 to .30 respectively. The smaller cities of Fredericksburg and Wilmington display 18 

unitary elasticity for lower income travelers both commuting and non-commuting. This indicates 19 

that users are more responsive to changes in road cost in these areas compared more dense 20 

locations. The larger cities of Frederick and Washington DC are relatively inelastic to toll 21 

charges even for lower income groups. This is likely because the demand for travel in these areas 22 
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is such that it is more efficient to pay a toll than select another route. The cities of Baltimore and 1 

Alexandria present a different scenario. In these areas there was already a road charge on at least 2 

one road section prior to the new VMT based toll. When the new toll is instituted, users are 3 

elastic to further increases in travel costs. The reason for this higher elasticity is that tolls are 4 

already in place on high demand facilities were there are few alternative routes; instituting an 5 

additional toll on these facilities increases cost, but because initial demand is so high the toll cost 6 

plus travel time makes many lower income users seek alternatives while higher income users 7 

take advantage of lower travel time.   8 

Model-2 uses the same congestion charging system as in Model-1, but in this case both 9 

income groups and trip purposes (commuter and non-commuter) have different values-of-time. 10 

When commuters are faced with a toll, they tend to accept the toll rather than seek substitutes. 11 

The combined elasticity for all six cites went from a range of .99 to .29 in Model-1 from each 12 

income group a range of .95 to .17. Non-commuters in most cases were slightly more elastic to 13 

pricing. In locations where a there was an additional pre-existing toll, road users remained elastic 14 

to the pricing. This suggests that even when users have very high VOT, they are still sensitive to 15 

very expensive road prices. Road conditions are a complex phenomenon and some of this 16 

complexity is picked up in in the Model-2 elasticity results. Commuters in the higher income 17 

class appear to become more sensitive to tolls when the commuter trip purpose VOT increases. 18 

This occurs because as lower income commuters become less elastic to pricing, road conditions 19 

become worse. As traffic flow decreases higher income commuters seek out faster and cheaper 20 

alternatives at a greater rate. This has an important implication for equity concerns over 21 

congestion charging. While higher income groups to have a lower elasticity to pricing, when all 22 
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commuters face the same toll, the disparity of travel costs between income groups shrinks, 1 

reducing the differential impact of tolls on each income group.  2 

Model-3 is formulated in the same way that model-2 is constructed but models variable 3 

demand rather than static demand. In the previous models, users were sensitive to trip cost only 4 

in selecting a route. In Model-3 users are sensitive to price not only when selecting a route, but 5 

also when deciding whether or not to take a trip and by which mode. The results show the 6 

somewhat paradoxical effect of user decision making under variable demand conditions (cells 7 

shaded in gray). For higher income commuters the elasticity of demand for tolled roads appear to 8 

mimic a Giffen good, that is, when the toll cost of the facility increases, the demand for travel on 9 

the facility for higher income groups, increases. This is an example of the complexity of the 10 

highway network. Users in lower income groups and especially non-commuters are much more 11 

elastic to tolling. Under variable demand when the price to travel on the road increases, users 12 

simply decide not to travel or seek alternative modes. This in turn reduces the travel time on the 13 

tolled roads making the road more attractive to commuters.   14 

<<Table 9 about here>> 15 

Cross Price Elasticity  16 

Table 10 provides that cross-elasticity of demand for non-tolled alternatives. These 17 

elasticities represent the demand for non-interstate facilities in each of the six cities when a toll is 18 

initiated on the interstates. As expected, since the elasticity of demand in most areas is below 19 

one, the substitution of interstate routes is low as well. In Wilmington, one of the two most 20 

remote cities, the substitution effect is high for the lower income group but is roughly the 21 

average for all other income groups. This indicates that many of the other routes within 22 
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Wilmington that offer a substitute are substantially time consuming. In most other cases, there is 1 

a lack of quality substitutes for interstate travel. As a result, planners in a mega-regional context 2 

will likely not have to worry about local roads congesting if a moderate VMT based toll is 3 

instituted on interstates.  4 

The cross elasticities for Model-2 behave as expected. In Wilmington commuters still 5 

seek out local road to avoid toll charges as is the case with Alexandria where there is a pre-6 

existing toll. Non-commuters do not appear to seek out alternatives, rather they avoid the area 7 

altogether. The Giffen effect is preserved in Model-3 even for non-tolled alternatives. Some 8 

users find the time-cost of travel on non-interstates too high and select not to make a trip. This 9 

in-turn makes travel on these routes relatively more attractive so higher income users travel on 10 

these roads.   11 

<<Table 10 about here>> 12 

Tolls and Road Conditions 13 

While tolling has a differential impact on each income group and trip purpose, there is a 14 

net impact on the road network when modeling response to tolls. Model-1 shows a 30% 15 

reduction in VMT, a 36% reduction in VHT and a 70% reduction in congested lane miles 16 

(CLM). Model-2 shows a smaller effect with a 24% reduction in VMT, a 29% reduction on VHT 17 

and a 62% reduction on CLM. Finally, Model-3 has the largest impact on network conditions. 18 

When interstates in the six cities are tolled and user response is modeled with variable demand, 19 

there is a 39% reduction on VMT, a 46% reduction in VHT and an 86% reduction in CLM.  20 

<<Table 11 about here>> 21 

 22 
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Synthesis of Results 1 

The results of the Base-case and three models show that users are not as elastic to price as 2 

one would assume, however users in different income groups and travelling for different 3 

purposes widely vary in response. This is partly due to the lack of available substitutes for 4 

interstates and partially due to the composition of income within trip purposes. Non-commuters 5 

have a generally lower value of time especially when VOT for commute trips is doubled, but the 6 

effect in elasticity of demand appears somewhat muted by a substantially higher level of upper 7 

income trips taken for non-commuting purposes. This is just one of the complexities of user 8 

response to highway network congestion charging. Understanding user elasticity to tolling is also 9 

important for policy-makers and planners to determine how non-tolled facilities will be impacted 10 

by tolls and the potential for revenue generation. The results indicate that areas of higher density 11 

tend to have a higher elasticity of demand in terms of tolls. In terms of cross-price elasticity 12 

between tolled interstates and non-tolled alternatives, there seems to be very little substitution. 13 

Modeling the unique effects of tolls in different sized cities in the context of a mega-region 14 

provides new insight on how road users in different metropolitan areas are likely to respond to 15 

tolls and how a large mega-regional network is impacted by toll policy 16 

The results of the models show that in non-purpose differentiated VOT models, users in 17 

the lowest income categories are the only group that are elastic to changes in road pricing. Lower 18 

income travelers are elastic to new tolls on existing tolled facilities, while higher income 19 

travelers take advantage of the absence of lower income travelers on these facilities. The 20 

representation of road users with different trip purposes and corresponding VOT, measures how 21 

each group of road user will respond to changes in road cost. This segmentation of users has 22 

important implications for policy. 23 
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When purpose differentiated congestion charging is applied to a mega-region, commuters 1 

in the higher income classes appear to become more sensitive to charges when the commuter trip 2 

purpose VOT increases. This occurs because as lower income commuters become less elastic to 3 

pricing and road conditions become worse. When all commuters face the same charge, the 4 

disparity of travel costs between income groups shrinks, reducing the differential impact of tolls 5 

on each income group. When a variable demand model is implemented to capture user trip 6 

decision making, a somewhat paradoxical effect occurs for commute travelers. For higher 7 

income commuters the elasticity of demand for tolled roads appears to mimic a Giffen good, that 8 

is, when the toll cost of the facility increases the demand for travel on the facility for higher 9 

income groups, increases. This provides an example of the complexity involved with toll policy 10 

and network effects, which only grows more complex in a mega-regional context. 11 

  12 

Conclusion 13 

Congestion pricing for the purpose of travel demand management has become a hot topic 14 

of debate among transportation planning agencies. In the US, a number of metropolitan areas 15 

have studied their potential implications, and some have implemented these policies on a limited 16 

number of links. Internationally, a few places such as, Stockholm and London, have 17 

implemented area-wide congestion pricing, and preliminary evaluation of their outcomes have 18 

presented valuable lessons in assessing user behavior. At the mega-regional level however, 19 

added computational and institutional challenges add to the complexity of assessing and 20 

implementing congestion pricing. In advancing the use of VOT, we tackle a key such challenge 21 

in this paper. 22 
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In this paper, two contributions are made. First, a methodology is presented to examine 1 

commuter/non-commuter travel behavior using VOT cross-classified by income and trip 2 

purpose. Second, the methodology is applied to the Capital mega-region, and travel behavior is 3 

studied for its six sub-regions. We used a trip based four-step travel demand model for the 4 

analysis with a Base-case and different three models. Mid-point arc elasticity was used to 5 

compare the model performances to that of the Base-case. Cross price elasticity was used to 6 

compare the performance between the toll and non-toll cases. Finally aggregate measures such as 7 

VMT, VHT, and CLM were used to compare all four scenarios.  8 

The proposed tools can be very useful for engineers, planners, and policy makers to 9 

examine travel behavior when congestion pricing is considered and travel behavior is analyzed 10 

using VOT by income and trip purpose. In the future scope of work, we will derive the VOT by 11 

income and trip purpose from a specially designed survey and then analyze the travel behavior in 12 

a mega-regional context. We also plan to use the travel model to answer other questions such as 13 

first/second best toll, highway capacity expansion, freight alone corridor, and highway financing.  14 

Overall, our analysis adds to the argument that simply expanding regional boundaries to 15 

meet the extents of ever-changing economic systems and applying traditional methods at new 16 

scales will not be adequate to resolve key issues in the long run. Institutionally, new frameworks 17 

are needed in which federal dollars can accurately target projects that cross existing planning 18 

spheres (be it MPO, State, or other) and intergovernmental decision-making is encouraged. At 19 

the same time, improved analytical approaches are needed to better realize the potential for 20 

mega-regional planning decisions.  21 

 22 
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Table 1: Summary of Proposed Models 1 

 2 

Table 2: Value of Travel Time  3 

Income Group Lower Bound ($) Upper Bound ($) cents/minute $/Hour $/Year 

Income Group 1 0 20,000 8.40 5.04 10,483 

Income Group 2 20,001 40,000 25.00 15.00 31,200 

Income Group 3 40,001 60,000 41.70 25.02 52,042 

Income Group 4 60,001 100,000 50.40 30.24 62,899 

Income Group 5 100,001 Higher 106.40 63.84 132,787 

 4 

  5 
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Table 3: Value of time by income, trip purpose, and user class 1 
Sl. 

No 

User 

Class Trip Purpose Income Travel Type Auto Type VOT 

1 1 Home Based Work Income 1 Commuter SOV, HOV-2, HOV-3+ cost a1 

2 2   Income 2 Commuter SOV, HOV-2, HOV-3+ cost b1 

3 3   Income 3 Commuter SOV, HOV-2, HOV-3+ cost c1 

4 4   Income 4 Commuter SOV, HOV-2, HOV-3+ cost d1 

5 5   Income 5 Commuter SOV, HOV-2, HOV-3+ cost e1 

6 6 Home Based Shopping Income 1 Non-Commuter SOV, HOV-2, HOV-3+ cost a2 

7 7   Income 2 Non-Commuter SOV, HOV-2, HOV-3+ cost b2 

8 8   Income 3 Non-Commuter SOV, HOV-2, HOV-3+ cost c2 

9 9   Income 4 Non-Commuter SOV, HOV-2, HOV-3+ cost d2 

10 10   Income 5 Non-Commuter SOV, HOV-2, HOV-3+ cost e2 

11 11 Home Based Other Income 1 Non-Commuter SOV, HOV-2, HOV-3+ cost a2 

12 12   Income 2 Non-Commuter SOV, HOV-2, HOV-3+ cost b2 

13 13   Income 3 Non-Commuter SOV, HOV-2, HOV-3+ cost c2 

14 14   Income 4 Non-Commuter SOV, HOV-2, HOV-3+ cost d2 

15 15   Income 5 Non-Commuter SOV, HOV-2, HOV-3+ cost e2 

16 3 Journey to Work* All Commuter SOV, HOV-2, HOV-3+ cost c1 

17 8 Journey at Work** All Non-Commuter SOV, HOV-2, HOV-3+ cost c2 

18 8 Non Home Based** All Non-Commuter SOV, HOV-2, HOV-3+ cost c2 

19 16  Long Distance  All Regional Commercial cost e2 

20 17   All Regional Medium Truck cost e2 

21 18   All Regional Heavy Truck cost e2 

22 19   All Regional Regional autos cost e2 

23 20   All Regional Regional trucks cost e2 

Note: *: Considered as a home based trip with income category 3; **: Considered as a non-home 2 

based trip with income category 3 3 

 4 

TABLE 4: NETWORK CHARACTERISTICS 5 

LINK FFSPEED DISTNACE Capacity T0 α β 

1 40 4 3,200 6 0.70 2.20 

2 30 6 1,650 12 0.65 2.25 

3 40 4 1,650 6 0.70 2.20 

4 30 6 3,200 12 0.65 2.25 

5 40 4 4,500 6 0.70 2.20 

 6 

  7 
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TABLE 5: TRIP PRODUCTIONS/ATTRACTIONS 1 

PURPOSE VOT BASE Variable % DIFF 

HBW 46.666 2,000 1,728 -15.75% 

HBO 23.333 3,500 2,907 -20.40% 

NHB 23.333 500 415 -20.40% 

 2 

TABLE 6: ASSIGNMENT RESULTS 3 

SCENARIO 
  
LINK 

  
TOLL 

LINK COST LINK VOLUME 

HBW HBO NHB HBW HBO NHB 

Base 

1 0 12.82 12.82 12.82 1,330 2,327 332 

2 0 24.18 24.18 24.18 670 1,173 168 

3 0 12.25 12.25 12.25 790 1,382 198 

4 0 20.01 20.01 20.01 540 944 135 

5 0 9.96 9.96 9.96 1,460 2,556 365 

Model-1: 
Tolled Link 

1 0 10.96 10.96 10.96 1,150 2,012 287 

2 0 32.78 32.78 32.78 850 1,488 213 

3 0 21.82 21.82 21.82 1,150 2,012 287 

4 600 37.71 37.71 37.71 0 0 0 

5 0 13.91 13.91 13.91 2,000 3,500 500 

Model-2: 
Tolled Link 

VOT by Purpose 

1 0 12.46 12.46 12.46 1,533 2,064 295 

2 0 25.53 25.53 25.53 467 1,436 205 

3 0 16.39 16.39 16.39 538 2,064 295 

4 600 27.54 40.40 40.40 996 0 0 

5 0 11.31 11.31 11.31 1,004 3,500 500 

Model-3: 
Tolled Link 

VOT by Purpose 
Variable Demand 

1 0 10.12 10.12 10.12 1,085 1,825 261 

2 0 22.46 22.46 22.46 643 1,082 155 

3 0 14.31 14.31 14.31 562 1,825 261 

4 600 25.49 38.34 38.34 523 0 0 

5 0 10.26 10.26 10.26 1,205 2,907 415 

 4 

TABLE 7: Demand Elasticity 5 

  HBW HBO NHB 

Model-1 -3.26 -3.26 -3.26 

Model-2 1.88 -3.20 -3.20 

Model-3 -0.13 -1.60 -1.60 

 6 

  7 
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TABLE 8: Base-case Highway Vehicle Trip Volumes 1 

 2 

 3 

TABLE 9: Elasticity of Demand for $0.50/mile toll 4 

 5 

 6 

  7 

INC 1 INC 2 INC 3 INC 4 INC 5 INC 1 INC 2 INC 3 INC 4 INC 5

Washington DC 45,049 143,272 326,008 7,281 23,726 6,293 12,595 22,307 806,619 133,999

Baltimore 89,815 250,366 488,380 7,397 27,327 16,934 26,075 36,783 910,128 141,212

Wilmington 5,324 12,929 22,712 759 2,730 1,649 2,365 4,021 58,031 5,992

Fredericksburg 374 950 2,173 393 581 239 360 830 6,574 985

Alexandria 7,080 24,652 54,577 2,313 5,250 1,280 2,617 4,562 105,471 22,795

Frederick 4,223 11,588 22,797 1,060 5,118 1,978 3,426 6,571 53,245 8,844

TOTAL 151,865 443,757 916,647 19,203 64,733 28,373 47,437 75,075 1,133,449 313,826

Non-commute TripsLocation

Base-case

Commute Trips

INC 1 INC 2 INC 3 INC 4 INC 5 INC 1 INC 2 INC 3 INC 4 INC 5

Washington DC -0.91 -0.67 -0.34 -0.20 -0.22 -0.92 -0.63 -0.31 -0.34 -0.25

Baltimore -1.02 -0.86 -0.54 -0.40 -0.36 -1.01 -0.84 -0.48 -0.51 -0.38

Wilmington -1.00 -0.74 -0.20 -0.25 -0.19 -1.00 -0.75 -0.27 -0.23 -0.17

Fredericksburg -1.00 -0.41 -0.12 -0.08 -0.09 -1.00 -0.36 -0.17 -0.13 -0.10

Alexandria -1.28 -0.44 -0.20 -0.27 -0.25 -1.30 -0.70 -0.36 -0.30 -0.18

Frederick -0.87 -0.55 -0.27 -0.35 -0.29 -0.90 -0.64 -0.39 -0.34 -0.22

TOTAL -0.99 -0.75 -0.42 -0.29 -0.28 -0.99 -0.75 -0.40 -0.15 -0.30

Washington DC -0.81 -0.28 -0.11 -0.23 -0.25 -0.92 -0.65 -0.34 -0.37 -0.28

Baltimore -1.02 -0.43 -0.23 -0.43 -0.39 -1.01 -0.85 -0.50 -0.53 -0.40

Wilmington -0.96 -0.16 -0.06 -0.30 -0.20 -1.00 -0.76 -0.31 -0.27 -0.19

Fredericksburg -0.64 -0.10 -0.04 -0.09 -0.13 -1.00 -0.34 -0.17 -0.13 -0.11

Alexandria -1.31 -0.22 -0.07 -0.42 -0.40 -1.35 -0.74 -0.40 -0.33 -0.21

Frederick -0.69 -0.23 -0.08 -0.35 -0.29 -0.90 -0.66 -0.39 -0.34 -0.22

TOTAL -0.95 -0.35 -0.17 -0.32 -0.31 -0.99 -0.76 -0.42 -0.18 -0.32

Washington DC -0.88 -0.50 -0.38 0.92 0.84 -0.94 -0.75 -0.54 -0.98 -0.79

Baltimore -1.05 -0.66 -0.51 0.98 0.79 -1.02 -0.92 -0.71 -1.02 -0.89

Wilmington -0.98 -0.34 -0.27 0.87 0.59 -1.00 -0.84 -0.46 -0.96 -0.68

Fredericksburg -0.75 -0.25 -0.26 0.51 0.28 -1.00 -0.35 -0.25 -0.90 -0.65

Alexandria -1.59 -0.69 -0.56 1.73 1.53 -1.40 -0.96 -0.74 -1.38 -1.09

Frederick -0.85 -0.51 -0.37 0.80 0.25 -0.96 -0.83 -0.66 -0.95 -0.71

TOTAL -1.01 -0.59 -0.45 0.98 0.84 -1.01 -0.86 -0.63 -1.00 -0.84

Model Location

Elasticity of Demand with Respect to Tolls

Commute Trips Non-commute Trips

Model-1

Model-2

Model-3
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TABLE 10: Cross-elasticity of Demand 1 

 2 

 3 

TABLE 11: Network effects 4 

 5 

 6 

 7 

INC 1 INC 2 INC 3 INC 4 INC 5 INC 1 INC 2 INC 3 INC 4 INC 5

Washington DC 0.05 0.04 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.03

Baltimore 0.13 0.14 0.13 0.02 0.04 0.04 0.05 0.04 0.08 0.09

Wilmington 0.33 0.28 0.07 0.04 0.03 0.14 0.12 0.04 0.04 0.03

Fredericksburg 0.02 0.03 0.01 0.00 0.00 0.00 0.01 0.00 0.01 0.00

Alexandria 0.28 0.22 0.15 0.05 0.05 0.10 0.09 0.06 0.10 0.07

Frederick 0.15 0.10 0.06 0.04 0.03 0.06 0.05 0.04 0.05 0.04

TOTAL 0.11 0.10 0.08 0.02 0.02 0.03 0.04 0.03 0.05 0.05

Washington DC 0.04 0.03 0.02 0.01 0.01 0.01 0.01 0.01 0.02 0.03

Baltimore 0.12 0.09 0.08 0.02 0.05 0.04 0.05 0.04 0.08 0.09

Wilmington 0.32 0.05 0.00 0.06 0.03 0.14 0.12 0.06 0.06 0.03

Fredericksburg 0.03 0.01 0.01 0.01 0.00 0.00 0.01 0.00 0.01 0.00

Alexandria 0.45 0.13 0.07 0.09 0.07 0.09 0.09 0.06 0.11 0.08

Frederick 0.12 0.05 0.02 0.03 0.04 0.06 0.06 0.04 0.05 0.05

TOTAL 0.11 0.06 0.05 0.02 0.03 0.04 0.04 0.03 0.05 0.06

Washington DC -0.24 -0.22 -0.25 0.73 0.51 -0.24 -0.23 -0.25 -0.95 -0.62

Baltimore -0.18 -0.16 -0.19 0.76 0.42 -0.22 -0.20 -0.21 -0.99 -0.79

Wilmington 0.05 -0.29 -0.36 0.39 -0.12 -0.11 -0.12 -0.24 -0.94 -0.53

Fredericksburg -0.23 -0.22 -0.24 0.51 -0.12 -0.24 -0.22 -0.23 -0.83 -0.46

Alexandria -0.07 -0.30 -0.45 1.17 0.22 -0.26 -0.25 -0.29 -1.29 -0.89

Frederick -0.17 -0.20 -0.24 0.67 -0.08 -0.20 -0.20 -0.22 -0.87 -0.48

TOTAL -0.20 -0.20 -0.24 0.76 0.45 -0.22 -0.21 -0.23 -0.99 -0.69

Model-3

Cross-Price Elasticity

Time of Day Location Commute Trips Non-commute Trips

Model-1

Model-2

VMT VHT CLM VMT VHT CLM VMT VHT CLM VMT VHT CLM

Washington DC 2,042,528 54,405 189 -25% -34% -58% -19% -27% -49% -35% -47% -81%

Baltimore 1,797,002 39,952 100 -40% -43% -100% -32% -35% -96% -47% -50% -100%

Wilmington 169,501 3,548 0 -20% -20% N/A -17% -18% N/A -29% -29% N/A

Fredericksburg 95,532 2,164 11 -7% -15% 0% -5% -12% 0% -7% -18% 0%

Alexandria 265,089 6,296 27 -25% -29% -68% -19% -23% -58% -38% -44% -100%

Frederick 145,520 2,872 5 -25% -28% -71% -21% -23% -71% -36% -40% -88%

TOTAL 4,515,173 109,236 333 -30% -36% -70% -24% -29% -62% -39% -46% -86%

Location
Base-case Model-1 Model-2 Model-3
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 1 

 FIGURE 1: EXAMPLE OF A SIMPLE NETWORK 2 
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 1 
Figure 2: Mega-region (Traffic) Modeling Zones  2 
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(a)Washington DC (b) Baltimore 

  
(d) Alexandria (c) Wilmington  

  
(e) Frederick  (f) Fredericksburg 

Figure 3: Zone System and Networks of Six Major Metropolitan Areas in Mega-Region 1 


